首页    期刊浏览 2025年03月10日 星期一
登录注册

文章基本信息

  • 标题:Brewery wastewater treatment plant key-component estimation using moving-window recurrent neural networks
  • 本地全文:下载
  • 作者:L. Dewasme
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:16808-16813
  • DOI:10.1016/j.ifacol.2020.12.1173
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis work proposes an experimental validation of software sensors for advanced on-line anaerobic digester process monitoring. The considered strategy is based on cheap available measurements (conductivity, temperature, pH, redox potential, etc) to reconstruct key component trajectories such as volatile fatty acid, carbonate and alkalinity concentrations, as well as biogas composition (methane, carbon dioxide, etc). The proposed solution considers a radial basis function artificial neural network (RBF -ANN) structure, using data processing (principal component analysis) and an efficient and fast sequential learning algorithm. In order to better reproduce unknown and complex process dynamics, the combination of a moving-window technique with a simple Jordan recurrent ANN structure (MW - RBF - RNN) is proposed. Comparative results based on real industrial data illustrate the estimation improvements provided by the MW - RBF - RNN with respect to the classical RBF - ANN structure.
  • 关键词:KeywordsAnaerobic digestionmachine learningsoftware sensorbrewery waste treatment
国家哲学社会科学文献中心版权所有