首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Model Error Modelling using a Stochastic Embedding approach with Gaussian Mixture Models for FIR systems ⁎
  • 本地全文:下载
  • 作者:Rafael Orellana ; Rodrigo Carvajal ; Juan C. Agüero
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:845-850
  • DOI:10.1016/j.ifacol.2020.12.841
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper a Maximum Likelihood estimation algorithm for error-model modelling using astochastic embeddingapproach is developed. The error-model distribution is approximated by a finite Gaussian mixture. An Expectation-Maximization based algorithm is proposed to estimate the nominal model and the distribution of the parameters of the error-model by using the data from independent experiments. The benefits of our proposal are illustrated via numerical simulations.
  • 关键词:KeywordsModel errorsStochastic EmbeddingMaximum LikelihoodGaussian MixtureExpectation-MaximizationEstimation
国家哲学社会科学文献中心版权所有