首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Inference of the statistics of a modulated promoter process from population snapshot gene expression data ⁎
  • 本地全文:下载
  • 作者:Eugenio Cinquemani
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:16767-16772
  • DOI:10.1016/j.ifacol.2020.12.1140
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn previous work, we have developed mathematical tools for the analysis of single-cell gene expression data from population snapshots, and an inference algorithm for the estimation of stationary statistics of promoter activation. In this work, we address the inference problem in the nonstationary case of modulated processes. This is of special relevance to control scenarios, where an exogenous input modulates the time evolution of promoter activation. We provide an effective method for the computation of the output statistics of a reaction network with a nonstationary, causal input process of modulated form. Based on this we devise and demonstrate an algorithm for the reconstruction of the promoter (input) process statistics from snapshot data.
  • 关键词:KeywordsReporter gene systemsControlled Markov chainsRegularized estimationSplines
国家哲学社会科学文献中心版权所有