首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Eigen Value Analysis in Lower Bounding Uncertainty of Kalman Filter Estimates ⁎
  • 本地全文:下载
  • 作者:Niladri Das ; Raktim Bhattacharya
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5022-5027
  • DOI:10.1016/j.ifacol.2020.12.1103
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we are concerned with the error-covariance lower-bounding problem in Kalman filtering: a sensor releases a set of measurements to the data fusion/estimation center, which has a perfect knowledge of the dynamic model, to allow it to estimate the states, while preventing it to estimate the states beyond a given accuracy. We propose a measurement noise manipulation scheme to ensure lower-bound on the estimation accuracy of states. Our proposed method ensures lower-bound on the steady state estimation error of Kalman filter, using mathematical tools from eigen value analysis.
  • 关键词:KeywordsNon-linear systemsestimationmonitoringlower-boundoptimizationprivacyeigen value analysis
国家哲学社会科学文献中心版权所有