首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A computationally efficient approach for robust gain-scheduled output-feedback LQR design for large-scale systems
  • 本地全文:下载
  • 作者:Adrian Ilka ; Nikolce Murgovski
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5988-5993
  • DOI:10.1016/j.ifacol.2020.12.1657
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper proposes a novel and simple control design procedure for sub-optimal robust gain-scheduled (GS) output-feedback linear quadratic regulator (LQR) design for large-scale uncertain linear parameter-varying (LPV) systems. First, we introduce a simple and practical technique to convexify the controller design problem in the scheduled parameters. Then, we propose a computationally efficient iterative Newton-based approach for gain-scheduled output-feedback LQR design. Next, we propose a simple modification to the proposed algorithm to design robust GS controllers. Finally, the proposed algorithm is applied for air management and fueling strategy of diesel engines, where the designed robust GS proportional-integral-derivative (PID) controller is validated on a benchmark model using real-world road profile data.
  • 关键词:KeywordsLinear quadratic regulatorgain-scheduled controlrobust controllinear parameter-varying systemsdiesel engineair-path system
国家哲学社会科学文献中心版权所有