首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Sampling variance update method in Monte Carlo Model Predictive Control ⁎
  • 本地全文:下载
  • 作者:Shintaro Nakatani ; Hisashi Date
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1274-1281
  • DOI:10.1016/j.ifacol.2020.12.1855
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis study describes the influence of user parameters on control performance in a Monte-Carlo model predictive control (MCMPC). MCMPC based on Monte-Carlo sampling depends significantly on the characteristics of sampling distribution. We quantified the effect of user determinable parameters on control performance uisng the relatonship between the algorithm of MCMPC and convergence to the optimal solution. In particular, we investigated the limitations associated with the variance of sampling distribution causing a trade-off relationship with the convergence speed and accuracy of estimation. To overcome this limitation, we proposed two variance updating methods and new MCMPC algorithm. Furthermore, the effectiveness of the numeriacl simulation was verified.
  • 关键词:KeywordsOptimal control theoryMonte-Carlo methodsRandomized methodsModel predictiveoptimization-based control
国家哲学社会科学文献中心版权所有