首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Multi-Agent Off-Policy Actor-Critic Algorithm for Distributed Reinforcement Learning
  • 本地全文:下载
  • 作者:Wesley Suttle ; Zhuoran Yang ; Kaiqing Zhang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1549-1554
  • DOI:10.1016/j.ifacol.2020.12.2021
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper extends off-policy reinforcement learning to the multi-agent case in which a set of networked agents communicating with their neighbors according to a time-varying graph collaboratively evaluates and improves a target policy while following a distinct behavior policy. To this end, the paper develops a multi-agent version of emphatic temporal difference learning for off-policy policy evaluation, and proves convergence under linear function approximation. The paper then leverages this result, in conjunction with a novel multi-agent off-policy policy gradient theorem and recent work in both multi-agent on-policy and single-agent off-policy actor-critic methods, to develop and give convergence guarantees for a new multi-agent off-policy actor-critic algorithm. An empirical validation of these theoretical results is given.
  • 关键词:Keywordsconsensusreinforcement learning controladaptive control of multi-agent systems
国家哲学社会科学文献中心版权所有