首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:FeO Content Prediction for an Industrial Sintering Process based on Supervised Deep Belief Network
  • 本地全文:下载
  • 作者:Xiaofeng Yuan ; Yongjie Gu ; Yalin Wang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:11883-11888
  • DOI:10.1016/j.ifacol.2020.12.703
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn industrial sintering processes, it is very important to monitor and control key quality indicators, which are often difficult to measure online. Soft sensor technology is a good solution for online prediction of quality indicators. Nowadays, deep learning is widely used in soft sensors due to its powerful ability in processing nonlinear data. In this paper, a supervised deep belief network (SDBN) is proposed by introducing quality variable into the input variables at each restricted Boltzmann machine to extract quality-related features for soft sensor. With case study on an actual industrial sintering process, SDBN shows much better prediction performance than the original deep belief network and stacked autoencoder.
  • 关键词:KeywordsSoft sensorDeep learningQuality predictionDBNSDBN
国家哲学社会科学文献中心版权所有