首页    期刊浏览 2025年06月23日 星期一
登录注册

文章基本信息

  • 标题:Gaussian processes modifier adaptation with uncertain inputs for distributed learning and optimization of wind farms 1
  • 本地全文:下载
  • 作者:Leif Erik Andersson ; Eric Christopher Bradford ; Lars Imsland
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:12626-12631
  • DOI:10.1016/j.ifacol.2020.12.1833
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA modifier adaptation scheme based on Gaussian processes is presented to optimize the control inputs of a wind farm. Often an approximate model of the wind farm is available, however due to the high complexity of the process plant-model mismatch is prevalent. For example the mechanics of wakes is not well-understood, which may have a profound impact on the power production of wind farms. Therefore, Gaussian process (GP) regression is exploited to account for this deviation. A distributed learning approach is used to learn the plant-model mismatch of each individual turbine considering explicitly the uncertainty of the uncontrolled inputs, like the wind direction. Afterwards, a distributed optimization scheme using alternating direction method of multipliers is applied to iteratively attain the wind farm optimum despite the presence of plant-model mismatch.
国家哲学社会科学文献中心版权所有