首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Learning-Based Risk-Averse Model Predictive Control for Adaptive Cruise Control with Stochastic Driver Models ⁎
  • 本地全文:下载
  • 作者:Mathijs Schuurmans ; Alexander Katriniok ; Hongtei Eric Tseng
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:15128-15133
  • DOI:10.1016/j.ifacol.2020.12.2037
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a learning-based, distributionally robust model predictive control approach towards the design of adaptive cruise control (ACC) systems. We model the preceding vehicle as an autonomous stochastic system, using a hybrid model with continuous dynamics and discrete, Markovian inputs. We estimate the (unknown) transition probabilities of this model empirically using observed mode transitions and simultaneously determine sets of probability vectors (ambiguity sets) around these estimates, that contain the true transition probabilities with high confidence. We then solve a risk-averse optimal control problem that assumes the worst-case distributions in these sets. We furthermore derive a robust terminal constraint set and use it to establish recursive feasibility of the resulting MPC scheme. We validate the theoretical results and demonstrate desirable properties of the scheme through closed-loop simulations.
  • 关键词:KeywordsLearningadaptation in autonomous vehiclesIntelligent driver aidsMotion control
国家哲学社会科学文献中心版权所有