首页    期刊浏览 2025年06月17日 星期二
登录注册

文章基本信息

  • 标题:Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques
  • 本地全文:下载
  • 作者:Pablo. S.G. Cisneros ; Adwait Datar ; Patrick Göttsch
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:6062-6068
  • DOI:10.1016/j.ifacol.2020.12.1676
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA fast data-driven extension of the velocity-based quasi-linear parameter-varying model predictive control (qLMPC) approach is proposed for scenarios where first principles models are not available or are computationally too expensive. We use tools from the recently proposed Koopman operator framework to identify a quasi-linear parameter-varying model (in input/output and state-space form) by choosing the observables from physical insight. An online update strategy to adapt to changes in the plant dynamics is also proposed. The approach is validated experimentally on a strongly nonlinear 3-degree-of-freedom Control Moment Gyroscope, showing remarkable tracking performance.
  • 关键词:KeywordsNonlinear predictive controllinear parameter-varying systemsdata-driven controlKoopman operatoradaptive control
国家哲学社会科学文献中心版权所有