首页    期刊浏览 2025年08月13日 星期三
登录注册

文章基本信息

  • 标题:Comparison of different models of future operating condition in Particle-Filter-based Prognostic Algorithms ⁎
  • 本地全文:下载
  • 作者:Heraldo Rozas ; Ferhat Tamssaouet ; Francisco Jaramillo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:10336-10341
  • DOI:10.1016/j.ifacol.2020.12.2770
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn literature, a major part of the prognostic studies considers the mission profile as a static parameter when evaluating the system Remaining Useful Life (RUL). However, in practice, the way in which a system operates significantly impacts the future evolution of its degradation. Therefore, this paper aims at evaluating the impact associated with the utilization of three different methods to characterize future operating conditions within the implementation of probability-based prognostic algorithms, namely Long-short term memory (LSTM), Markov Chain and Constant (or time-invariant) usage. These three methods are compared together in terms of both prognostic accuracy and essential update times when investigating the Time-of-Discharge (ToD) of an electric bicycle Lithium-Ion (Li-Ion) battery.
  • 关键词:KeywordsFailure prognosticMission profileMarkov ChainLSTM networkLi-Ion battery
国家哲学社会科学文献中心版权所有