首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Performance Analysis of Long Horizon Predictive Control with Modified Sphere Decoding Algorithm
  • 本地全文:下载
  • 作者:Mohamed Tamim Touati ; Shaoyuan Li ; Jing Wu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:13101-13106
  • DOI:10.1016/j.ifacol.2020.12.2271
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe complexity of the optimization problem arises in multistep model predictive control for power electronics as they are discrete by nature and have predefined control actions given as integer control variables. Generally, Sphere Decoding Algorithm (SDA) is used to solve the optimization problem. In this paper, we present an SDA with an Evolutionary Optimization attitude (EO) to simplify the complex exhaustive search that is brought by the long prediction horizon. The presented technique reconstructs a smaller search area from a large search area which decreases the number of candidate solutions. The performance of the optimization algorithm is evaluated through statistical analysis and computation burden.
  • 关键词:KeywordsLong HorizonModel Predictive ControlSphere DecodingEvolutionary Optimization
国家哲学社会科学文献中心版权所有