首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A deep learning unsupervised approach for fault diagnosis of household appliances
  • 本地全文:下载
  • 作者:Francesco Cordoni ; Gianluca Bacchiega ; Giulio Bondani
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:10749-10754
  • DOI:10.1016/j.ifacol.2020.12.2856
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFault detection and fault diagnosis are crucial subsystems to be integrated within the control architecture of modern industrial processes to ensure high quality standards. In this paper we present a two-stage unsupervised approach for fault detection and diagnosis in household appliances. In particular a suitable testing procedure has been implemented on a real industrial production line in order to extract the most meaningful features that allow to efficiently classify different types of fault by consecutively exploiting deep autoencoder neural network and k-means or hierarchical clustering techniques.
  • 关键词:KeywordsFault detectionisolationDeep LearningNeural networksUnsupervised LearningAutoencoder Neural Networks
国家哲学社会科学文献中心版权所有