首页    期刊浏览 2025年06月09日 星期一
登录注册

文章基本信息

  • 标题:State-Space Kernelized Closed-Loop Identification of Nonlinear Systems
  • 本地全文:下载
  • 作者:M.F. Shakib ; R. Tóth ; A.Y. Pogromsky
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1126-1131
  • DOI:10.1016/j.ifacol.2020.12.1317
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we propose a non-parametric state-space identification approach for open-loop and closed-loop discrete-time nonlinear systems with multiple inputs and multiple outputs. Employing a least squares support vector machine (LS-SVM) approach in a reproducing kernel Hilbert space framework, a nonlinear auto-regressive model with exogenous terms is identified to provide a non-parametric estimate of the innovation noise sequence. Subsequently, this estimate is used to obtain a compatible non-parametric estimate of the state sequence in an unknown basis using kernel canonical correlation analysis. Finally, the estimate of the state sequence is used together with the estimated innovation noise sequence to find a non-parametric state-space model, again using a LS-SVM approach. The performance of the approach is analyzed in a simulation study with a nonlinear system operating both in open loop and closed loop. The identification approach can be viewed as a nonlinear counterpart of consistent subspace identification techniques for linear time-invariant systems operating in closed loop.
  • 关键词:KeywordsNonlinear State-Space IdentificationNARX modelingKernel Canonical Correlation AnalysisLS-SVM
国家哲学社会科学文献中心版权所有