摘要:AbstractDistributed manufacturing systems represent a new paradigm in the industrial context, supported by new technologies provided by industry 4.0. In this paper, a model for dynamic allocation of Production Orders (PO) in the context of distributed additive manufacturing systems is proposed. The scheduling model performs a local optimization of PO allocation considering a production times forecasting model, fed by system state data obtained by means of an IoT platform, and transportation real-time data. A simulation-based experiment was conducted in a test case with real and simulated data collected from an elevator spare parts provider in Brazil. A significant reduction of 77.94% of the Average Waiting Time (AWT) was obtained, allowing for an increased efficiency of the additive manufacturing system, which supports the forthcoming pilot application.