首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Consensus-based Distributed Algorithm for Multisensor-Multitarget Tracking under Unknown–but–Bounded Disturbances
  • 本地全文:下载
  • 作者:Natalia Amelina ; Victoria Erofeeva ; Oleg Granichin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:3589-3595
  • DOI:10.1016/j.ifacol.2020.12.1756
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider a dynamic network of sensors that cooperate to estimate parameters of multiple targets. Each sensor can observe parameters of a few targets, reconstructing the trajectories of the remaining targets via interactions with “neighbouring” sensors. The multi-target tracking has to be provided in the face of uncertainties, which include unknown-but-bounded drift of parameters, noise in observations and distortions introduced by communication channels. To provide tracking in presence of these uncertainties, we employ a distributed algorithm, being an “offspring” of a consensus protocol and the stochastic gradient descent. The mathematical results on the algorithm’s convergence are illustrated by numerical simulations.
  • 关键词:KeywordsSensor networkrandomized algorithmsconsensusmultitarget tracking
国家哲学社会科学文献中心版权所有