首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Trajectory Optimization for Falsification:A Case Study of Vehicle Rollover Test Generation Based on Black-box Models ⁎
  • 本地全文:下载
  • 作者:Sunbochen Tang ; Nan Li ; Ilya Kolmanovsky
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:14279-14284
  • DOI:10.1016/j.ifacol.2020.12.1175
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we consider optimization of trajectories for automotive vehicle rollover testing. In particular,worst-casetrajectories that are most likely to cause rollover accidents are determined through trajectory optimization. Our approach combines online local-model identification and gradient-based input update, and can be applied toblack-boxtype models, e.g., a high-fidelity vehicle dynamics model given as a simulation code and not as an explicit set of equations. With our approach, a library of worst-case trajectories corresponding to different operating conditions (e.g., vehicle mass, road surface conditions, etc.) can be constructed and subsequently used in hardware tests.
  • 关键词:Keywordstrajectory optimizationdata-driven methodsautomotive applicationsverificationvalidationdesign of experiments
国家哲学社会科学文献中心版权所有