首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Learning Markov Jump Affine Systems via Regression Trees for MPC
  • 本地全文:下载
  • 作者:Francesco Smarra ; Alessandro D’Innocenzo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5252-5257
  • DOI:10.1016/j.ifacol.2020.12.1203
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractModel Predictive Control is a well consolidated technique to design optimal control strategies, leveraging the capability of a mathematical model to predict a system’s behavior over a time horizon. However, building physics-based models for complex large-scale systems can be cost and time prohibitive. To overcome this problem we propose a methodology to exploit Regression Trees technique in order to build a Markov Jump System model of a large-scale system using historical data, and apply Model Predictive Control. A comparison with an optimal benchmark and related techniques is provided on an energy management system to validate the performance of the proposed methodology.
  • 关键词:KeywordsRegression TreesModel Predictive ControlSwitching SystemsMarkov Jump SystemsData-driven
国家哲学社会科学文献中心版权所有