摘要:AbstractModel Predictive Control is a well consolidated technique to design optimal control strategies, leveraging the capability of a mathematical model to predict a system’s behavior over a time horizon. However, building physics-based models for complex large-scale systems can be cost and time prohibitive. To overcome this problem we propose a methodology to exploit Regression Trees technique in order to build a Markov Jump System model of a large-scale system using historical data, and apply Model Predictive Control. A comparison with an optimal benchmark and related techniques is provided on an energy management system to validate the performance of the proposed methodology.