首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Probabilistic H 2 -norm estimation via Gaussian process system identification ⁎
  • 本地全文:下载
  • 作者:Daniel Persson ; Anne Koch ; Frank Allgöwer
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:431-436
  • DOI:10.1016/j.ifacol.2020.12.211
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present a method for data-based estimation of the H2-norm of a linear time-invariant system from input-output data in a probabilistic setting by employing the recent advances in Gaussian process system identification using stable-spline kernels. Advantages of this starting point include that the norm can be estimated for the continuous-time system and over infinite horizon, even though only a finite number of measurements are available. We approximate theH2-norm distribution as Gaussian, whose expectation can even be obtained analytically, while we use a numerical scheme based on Gaussian process quadrature for the variance. Not only do we utilize the posterior variance of the Gaussian process to derive an error estimate for theH2-norm, but also to tune the estimation by optimizing the input sequence. The performance of the developed scheme is thoroughly evaluated in simulation.
  • 关键词:KeywordsNonparametric methodsBayesian methodsData-based controlIdentification for controlInputexcitation design
国家哲学社会科学文献中心版权所有