首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Identification of continuous-time systems utilising Kautz basis functions from sampled-data ⁎
  • 本地全文:下载
  • 作者:María Coronel ; Rodrigo Carvajal ; Juan C. Agüero
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:536-541
  • DOI:10.1016/j.ifacol.2020.12.471
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we address the problem of identifying a continuous-time deterministic system utilising sampled-data with instantaneous sampling. We develop an identification algorithm based on Maximum Likelihood. The exact discrete-time model is obtained for two cases: i) known continuous-time model structure and ii) using Kautz basis functions to approximate the continuous-time transfer function. The contribution of this paper is threefold: i) we show that, in general, the discretisation of continuous-time deterministic systems leads to several local optima in the likelihood function, phenomenon termed asaliasing,ii) we discretise Kautz basis functions and obtain a recursive algorithm for constructing their equivalent discrete-time transfer functions, and iii) we show that the utilisation of Kautz basis functions to approximate the true continuous-time deterministic system results in convex log-likelihood functions. We illustrate the benefits of our proposal via numerical examples.
  • 关键词:KeywordsSystem identificationContinuous-time modelMaximum LikelihoodDiscrete-time modelKautz basis functions
国家哲学社会科学文献中心版权所有