首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Improved Pose Graph Optimization for Planar Motions Using Riemannian Geometry on the Manifold of Dual Quaternions
  • 本地全文:下载
  • 作者:Kailai Li ; Johannes Cox ; Benjamin Noack
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:9541-9547
  • DOI:10.1016/j.ifacol.2020.12.2432
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present a novel Riemannian approach for planar pose graph optimization problems. By formulating the cost function based on the Riemannian metric on the manifold of dual quaternions representing planar motions, the nonlinear structure of the SE(2) group is inherently considered. To solve the on-manifold least squares problem, a Riemannian Gauss– Newton method using the exponential retraction is applied. The proposed Riemannian pose graph optimizer (RPG-Opt) is further evaluated based on public planar pose graph data sets. Compared with state-of-the-art frameworks, the proposed method gives equivalent accuracy and better convergence robustness under large uncertainties of odometry measurements.
  • 关键词:KeywordsParameter estimationRiemannian geometrymanifold optimizationplanar rigid body motionpose graph optimization
国家哲学社会科学文献中心版权所有