首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Differential neural network identifier with composite learning laws for uncertain nonlinear systems
  • 本地全文:下载
  • 作者:Alejandro Guarneros ; Iván Salgado ; Manuel Mera
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:7897-7902
  • DOI:10.1016/j.ifacol.2020.12.1976
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis manuscript describes the design and numerical implementation of a novel composite differential neural network aimed to estimate nonlinear uncertain systems. A differential neural network (DNN) with a composite feedback matrix approximates the structure of non-linear uncertain systems. The feedback matrix is assumed to belong to a convex set as well as the free parameters of the DNN (weights) at any instant of time. Therefore, ɩ-different DNN works in parallel. A composite Lyapunov function finds the convex hull approximation of the set of DNN working together to improve the approximation capabilities of classical neural networks. The main result of this study shows the practical stability of the estimation error. Numerical simulations demonstrate the approximation capabilities of the composite DNN implemented in a Van Der Pol oscillator where the presence of high-frequency components makes difficult a classical DNN approximation.
  • 关键词:KeywordsComposite Lyapunov functionDifferential neural networksnonlinear systemsuncertain systems
国家哲学社会科学文献中心版权所有