首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:OpEn: Code Generation for Embedded Nonconvex Optimization *
  • 本地全文:下载
  • 作者:Pantelis Sopasakis ; Emil Fresk ; Panagiotis Patrinos
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:6548-6554
  • DOI:10.1016/j.ifacol.2020.12.071
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present Optimization Engine (OpEn): an open-source code generation framework for real-time embedded nonconvex optimization, which implements a novel numerical method. OpEn combines the proximal averaged Newton-type method for optimal control (PANOC) with the penalty and augmented Lagrangian methods to compute approximate stationary points of nonconvex problems. The proposed method involves very simple algebraic operations such as vector products, has a low memory footprint and exhibits very good convergence properties that allow the solution of nonconvex problems on embedded devices. OpEn’s core solver is written is Rust — a modern, high-performance, memory-safe and thread-safe systems programming language — while users can call it from Python, MATLAB, C, C++, ROS or over a TCP socket.
  • 关键词:KeywordsEmbedded numerical optimizationnonconvex optimization problemscode generationmodel predictive controlmoving horizon estimationRustRobot Operating System
国家哲学社会科学文献中心版权所有