首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Deep Learning Based Silicon Content Estimation in Ironmaking Process
  • 本地全文:下载
  • 作者:Heng Zhou ; Haifeng Zhang ; Chunjie Yang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:10737-10742
  • DOI:10.1016/j.ifacol.2020.12.2854
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractGiven the complexity and isolation of the blast furnace (BF), field engineers generally operate the system upon their former experience and the operating manual. Harsh environment and equipment shortage have made the testing of silicon content a prevailing method for the detection of temperature within BF. As the silicon content is a comprehensive performance of internal thermal state, knowing the exact value in advance can be very helpful for operators to keep the furnace temperature at a reasonable extent. Thus, an improved gated recurrent unit recurrent neural network (GRU-RNN) is proposed to predict the silicon content of hot metal, indicating a competitive performance at 92.4% hit rate among several deep learning methods.
  • 关键词:KeywordsDeep LearningSilicon ContentBlast Furnace
国家哲学社会科学文献中心版权所有