首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Imaging-sonar-based Underwater Object Recognition Utilizing Object’s Yaw Angle Estimation with Deep Learning ⁎
  • 本地全文:下载
  • 作者:Minsung Sung ; Meungsuk Lee ; Byeongjin Kim
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:15475-15480
  • DOI:10.1016/j.ifacol.2020.12.2371
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper proposes a method to recognize underwater target objects and estimate their yaw angle using an imaging sonar. First, a light sonar simulator generated template images of the target objects from various viewing angles. Next, a generative adversarial network predicted a semantic map by segmenting the real sonar image for reliable recognition. Then, matching the template images and semantic map identifies the target object and its yaw angle. We verified the proposed method by installing objects in the indoor water tank. The proposed method can provide relative pose information of sensing platforms which is useful for pose control and navigation.
  • 关键词:KeywordsGANObject DetectionSegmentationSonar ImageSonar Simulator
国家哲学社会科学文献中心版权所有