首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Overcoming Output Constraints in Iterative Learning Control Systems by Reference Adaptation
  • 本地全文:下载
  • 作者:Michael Meindl ; Fabio Molinari ; Jörg Raisch
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1480-1486
  • DOI:10.1016/j.ifacol.2020.12.1938
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIterative Learning Control (ILC) schemes can guarantee properties such as asymptotic stability and monotonic error convergence, but do not, in general, ensure adherence to output constraints. The topic of this paper is the design of a reference-adapting ILC (RAILC) scheme, extending an existing ILC system and capable of complying with output constraints. The underlying idea is to scale the reference at every trial by using a conservative estimate of the output’s progression. Properties as the monotonic convergence above a threshold and the respect of output constraints are formally proven. Numerical simulations and experimental results reinforce our theoretical results.
  • 关键词:KeywordsIterativeRepetitive learning controlLinear systemsLearning for controlControl of constrained systems
国家哲学社会科学文献中心版权所有