首页    期刊浏览 2025年07月14日 星期一
登录注册

文章基本信息

  • 标题:Maximum Likelihood Methods for Inverse Learning of Optimal Controllers ⁎
  • 本地全文:下载
  • 作者:Marcel Menner ; Melanie N. Zeilinger
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5266-5272
  • DOI:10.1016/j.ifacol.2020.12.1206
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a framework for inverse learning of objective functions for constrained optimal control problems, which is based on the Karush-Kuhn-Tucker (KKT) conditions. We discuss three variants corresponding to different model assumptions and computational complexities. The first method uses a convex relaxation of the KKT conditions and serves as the benchmark. The main contribution of this paper is the proposition of two learning methods that combine the KKT conditions with maximum likelihood estimation. The key benefit of this combination is the systematic treatment of constraints for learning from noisy data with a branch-and-bound algorithm using likelihood arguments. This paper discusses theoretic properties of the learning methods and presents simulation results that highlight the advantages of using the maximum likelihood formulation for learning objective functions.
  • 关键词:KeywordsLearning for controldata-based controlconstrained control
国家哲学社会科学文献中心版权所有