首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:On Gaussian Process Based Koopman Operators
  • 本地全文:下载
  • 作者:Yingzhao Lian ; Colin N. Jones
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:449-455
  • DOI:10.1016/j.ifacol.2020.12.217
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractEnabling analysis of non-linear systems in linear form, the Koopman operator has been shown to be a powerful tool for system identification and controller design. However, current data-driven methods cannot provide quantification of model uncertainty given the learnt model. This work proposes a probabilistic Koopman operator model based on Gaussian processes which extends the author’s previous results and gives a quantification of model uncertainty. The proposed probabilistic model enables efficient propagation of uncertainty in feature space which allows efficient stochastic/robust controller design. The proposed probabilistic model is tested by learning stable nonlinear dynamics generating hand-written characters and by robust controller design of a bilinear DC motor.
  • 关键词:KeywordsKoopman operatorGaussan ProcessModel Predictive Control
国家哲学社会科学文献中心版权所有