期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2021
卷号:10
期号:4
页码:243
DOI:10.3390/ijgi10040243
语种:English
出版社:MDPI AG
摘要:Topographic features of territory have a significant impact on the spatial distribution of soil properties. This research is focused on digital soil mapping (DSM) of main agrochemical soil properties—values of soil organic carbon (SOC), nitrogen, potassium, calcium, magnesium, sodium, phosphorus, pH, and thickness of the humus-accumulative (AB) horizon of arable lands in the Trans-Ural steppe zone (Republic of Bashkortostan, Russia). The methods of multiple linear regression (MLR) and support vector machine (SVM) were used for the prediction of soil nutrients spatial distribution and variation. We used 17 topographic indices calculated using the SRTM (Shuttle Radar Topography Mission) digital elevation model. Results showed that SVM is the best method in predicting the spatial variation of all soil agrochemical properties with comparison to MLR. According to the coefficient of determination R2, the best predictive models were obtained for content of nitrogen (R2 = 0.74), SOC (R2 = 0.66), and potassium (R2 = 0.62). In our study, elevation, slope, and MMRTF (multiresolution ridge top flatness) index are the most important variables. The developed methodology can be used to study the spatial distribution of soil nutrients and large-scale mapping in similar landscapes.