摘要:In view of Ethiopia’s significant renewable energy (RE) potential and the dynamic interactions among the components of the Water–Energy–Food (WEF) Nexus, we attempted to incorporate solar and small-scale hydropower into the optimal design of an environmentally friendly microgrid with the primary goal of ensuring the sustainability of irrigation water pumping, while taking advantage of existing infrastructure in various small administrative units (<i>kebele</i>). Any additional generated energy would be made available to the community for other needs, such as lighting and cooking, to support health and food security and improve the general quality of life. The novelty of the study stems from the utilization of in situ social data, retrieved during fieldwork interviews conducted in the <i>kebele</i> of interest, to ascertain the actual needs and habits of the local people. Based on these combined efforts, we were able to formulate a realistic energy demand plan for climatic conditions typical of Sub-Saharan Africa agricultural communities and analyze four different scenarios of the microgrid’s potential functionality and capital cost, given different tolerance levels of scheduled outages. We demonstrated that the RE-based microgrid would be socially and environmentally beneficial and its capital cost sensitive to the incorporation of individual or communal machines and appliances. Ultimately, the social impact investigation revealed the design would be welcomed by the local community, whose members already implement tailor-made solutions to support their agricultural activities. Finally, we argue that extended educational programs and unambiguous policies should be in place before any implementation to ensure the venture’s sustainability and functionality.