摘要:While outdoor advertisements are common features within towns and cities, they may reinforce social inequalities in health. Vulnerable populations in deprived areas may have greater exposure to fast food, gambling and alcohol advertisements, which may encourage their consumption. Understanding who is exposed and evaluating potential policy restrictions requires a substantial manual data collection effort. To address this problem we develop a deep learning workflow to automatically extract and classify unhealthy advertisements from street-level images. We introduce the Liverpool
\documentclass[12pt