首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Multi-dimensional optimization of In 0.53Ga 0.47As thermophotovoltaic cell using real coded genetic algorithm
  • 本地全文:下载
  • 作者:Mansur Mohammed Ali Gamel ; Pin Jern Ker ; Hui Jing Lee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-86175-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The optimization of thermophotovoltaic (TPV) cell efficiency is essential since it leads to a significant increase in the output power. Typically, the optimization of In 0.53Ga 0.47As TPV cell has been limited to single variable such as the emitter thickness, while the effects of the variation in other design variables are assumed to be negligible. The reported efficiencies of In 0.53Ga 0.47As TPV cell mostly remain < 15%. Therefore, this work develops a multi-variable or multi-dimensional optimization of In 0.53Ga 0.47As TPV cell using the real coded genetic algorithm (RCGA) at various radiation temperatures. RCGA was developed using Visual Basic and it was hybridized with Silvaco TCAD for the electrical characteristics simulation. Under radiation temperatures from 800 to 2000 K, the optimized In 0.53Ga 0.47As TPV cell efficiency increases by an average percentage of 11.86% (from 8.5 to 20.35%) as compared to the non-optimized structure. It was found that the incorporation of a thicker base layer with the back-barrier layers enhances the separation of charge carriers and increases the collection of photo-generated carriers near the band-edge, producing an optimum output power of 0.55 W/cm 2 (cell efficiency of 22.06%, without antireflection coating) at 1400 K radiation spectrum. The results of this work demonstrate the great potential to generate electricity sustainably from industrial waste heat and the multi-dimensional optimization methodology can be adopted to optimize semiconductor devices, such as solar cell, TPV cell and photodetectors.
国家哲学社会科学文献中心版权所有