首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:A spiking neural network (SNN) for detecting high frequency oscillations (HFOs) in the intraoperative ECoG
  • 本地全文:下载
  • 作者:Karla Burelo ; Mohammadali Sharifshazileh ; Niklaus Krayenbühl
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-85827-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:To achieve seizure freedom, epilepsy surgery requires the complete resection of the epileptogenic brain tissue. In intraoperative electrocorticography (ECoG) recordings, high frequency oscillations (HFOs) generated by epileptogenic tissue can be used to tailor the resection margin. However, automatic detection of HFOs in real-time remains an open challenge. Here we present a spiking neural network (SNN) for automatic HFO detection that is optimally suited for neuromorphic hardware implementation. We trained the SNN to detect HFO signals measured from intraoperative ECoG on-line, using an independently labeled dataset (58 min, 16 recordings). We targeted the detection of HFOs in the fast ripple frequency range (250-500 Hz) and compared the network results with the labeled HFO data. We endowed the SNN with a novel artifact rejection mechanism to suppress sharp transients and demonstrate its effectiveness on the ECoG dataset. The HFO rates (median 6.6 HFO/min in pre-resection recordings) detected by this SNN are comparable to those published in the dataset (Spearman’s \documentclass[12pt
国家哲学社会科学文献中心版权所有