首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:Transcriptome-based analysis of resistance mechanism to black point caused by Bipolaris sorokiniana in wheat
  • 本地全文:下载
  • 作者:Qiaoyun Li ; Chuang Gao ; Kaige Xu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-86303-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Black point is a cereal disease caused by complex pathogens, of which the pathogenicity of Bipolaris sorokiniana is the most serious in wheat. Resistance to black point is quantitative in nature, and thus the mechanism is poorly understood. We conducted a comparative transcriptome analysis to identify differentially expressed genes (DEGs) in black point-slightly susceptible and -highly susceptible wheat lines at different timepoints following B. sorokiniana inoculation. DEGs associated with photosynthesis were upregulated in black point-slightly susceptible lines. The top Gene Ontology enrichment terms for biological processes were oxidation–reduction, response to cold, salt stress, oxidative stress, and cadmium ion; terms for cellular component genes were mainly involved in plasma membrane and cytoplasmic membrane-bounded vesicle, whereas those for molecular function were heme binding and peroxidase activity. Moreover, activities of antioxidant enzymes superoxide dismutase, catalase, and peroxidase were higher in slightly susceptible lines than those in highly susceptible lines (except peroxidase 12–24 days post-inoculation). Thus, resistance to B. sorokiniana-caused black point in wheat was mainly related to counteracting oxidative stress, although the specific metabolic pathways require further study. This study presents new insights for understanding resistance mechanisms of selected wheat lines to black point.
国家哲学社会科学文献中心版权所有