首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Discovering latent node Information by graph attention network
  • 本地全文:下载
  • 作者:Weiwei Gu ; Fei Gao ; Xiaodan Lou
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-85826-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In this paper, we propose graph attention based network representation (GANR) which utilizes the graph attention architecture and takes graph structure as the supervised learning information. Compared with node classification based representations, GANR can be used to learn representation for any given graph. GANR is not only capable of learning high quality node representations that achieve a competitive performance on link prediction, network visualization and node classification but it can also extract meaningful attention weights that can be applied in node centrality measuring task. GANR can identify the leading venture capital investors, discover highly cited papers and find the most influential nodes in Susceptible Infected Recovered Model. We conclude that link structures in graphs are not limited on predicting linkage itself, it is capable of revealing latent node information in an unsupervised way once a appropriate learning algorithm, like GANR, is provided.
国家哲学社会科学文献中心版权所有