首页    期刊浏览 2024年09月28日 星期六
登录注册

文章基本信息

  • 标题:Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer’s disease
  • 本地全文:下载
  • 作者:Maurizio Bergamino ; Ryan R. Walsh ; Ashley M. Stokes
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-86505-7
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Magnetic resonance imaging (MRI) based diffusion tensor imaging (DTI) can assess white matter (WM) integrity through several metrics, such as fractional anisotropy (FA), axial/radial diffusivities (AxD/RD), and mode of anisotropy (MA). Standard DTI is susceptible to the effects of extracellular free water (FW), which can be removed using an advanced free-water DTI (FW-DTI) model. The purpose of this study was to compare standard and FW-DTI metrics in the context of Alzheimer’s disease (AD). Data were obtained from the Open Access Series of Imaging Studies (OASIS-3) database and included both healthy controls (HC) and mild-to-moderate AD. With both standard and FW-DTI, decreased FA was found in AD, mainly in the corpus callosum and fornix, consistent with neurodegenerative mechanisms. Widespread higher AxD and RD were observed with standard DTI; however, the FW index, indicative of AD-associated neurodegeneration, was significantly elevated in these regions in AD, highlighting the potential impact of free water contributions on standard DTI in neurodegenerative pathologies. Using FW-DTI, improved consistency was observed in FA, AxD, and RD, and the complementary FW index was higher in the AD group as expected. With both standard and FW-DTI, higher values of MA coupled with higher values of FA in AD were found in the anterior thalamic radiation and cortico-spinal tract, most likely arising from a loss of crossing fibers. In conclusion, FW-DTI better reflects the underlying pathology of AD and improves the accuracy of DTI metrics related to WM integrity in Alzheimer’s disease.
国家哲学社会科学文献中心版权所有