首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018
  • 本地全文:下载
  • 作者:Guoqiang Tang ; Martyn P. Clark ; Andrew J. Newman
  • 期刊名称:Earth System Science Data Discussions
  • 电子版ISSN:1866-3591
  • 出版年度:2020
  • 卷号:12
  • 期号:4
  • 页码:2381-2409
  • DOI:10.5194/essd-12-2381-2020
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Station-based serially complete datasets (SCDs) of precipitation and temperature observations are important for hydrometeorological studies. Motivated by the lack of serially complete station observations for North America, this study seeks to develop an SCD from 1979 to 2018 from station data. The new SCD for North America (SCDNA) includes daily precipitation, minimum temperature (Tmin), and maximum temperature (Tmax) data for 27 276 stations. Raw meteorological station data were obtained from the Global Historical Climate Network Daily (GHCN-D), the Global Surface Summary of the Day (GSOD), Environment and Climate Change Canada (ECCC), and a compiled station database in Mexico. Stations with at least 8-year-long records were selected, which underwent location correction and were subjected to strict quality control. Outputs from three reanalysis products (ERA5, JRA-55, and MERRA-2) provided auxiliary information to estimate station records. Infilling during the observation period and reconstruction beyond the observation period were accomplished by combining estimates from 16 strategies (variants of quantile mapping, spatial interpolation, and machine learning). A sensitivity experiment was conducted by assuming that 30 % of observations from stations were missing – this enabled independent validation and provided a reference for reconstruction. Quantile mapping and mean value corrections were applied to the final estimates. The median Kling–Gupta efficiency (KGE′) values of the final SCDNA for all stations are 0.90, 0.98, and 0.99 for precipitation, Tmin, and Tmax, respectively. The SCDNA is closer to station observations than the four benchmark gridded products and can be used in applications that require either quality-controlled meteorological station observations or reconstructed long-term estimates for analysis and modeling. The dataset is available at https://doi.org/10.5281/zenodo.3735533 (Tang et al., 2020).
国家哲学社会科学文献中心版权所有