首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The impact of Data structure on classification ability of financial failure prediction model
  • 本地全文:下载
  • 作者:Lucia Svabova ; Lucia Michalkova
  • 期刊名称:SHS Web of Conferences
  • 印刷版ISSN:2416-5182
  • 电子版ISSN:2261-2424
  • 出版年度:2020
  • 卷号:74
  • 页码:1-8
  • DOI:10.1051/shsconf/20207405024
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:The creation of prediction models to reveal the threat of financial difficulties of the companies is realized by the application of various multivariate statistical methods. From a global perspective, prediction models serve to classify a company into a group of prosperous or non-prosperous companies, or to quantify the probability of financial difficulties in the company. In many countries around the world, real financial data about the companies are used in developing these prediction models. In Slovakia, standard data from the financial statements and annual reports of Slovak companies are used for the creation of the company’s failure model. Since in this case there are generally large data files, it is necessary to pre-process the data by the selected methods before the prediction model is constructed. A database of the companies needs to be prepared for the subsequent application of statistical methods, and it is also highly appropriate to focus globally on the detection of potential extreme and remote observations. Therefore, the article will focus on quantifying the impact of the data structure detected, for example, the occurrence of extreme and remote observations in the data set, on the resulting overall classification of the prediction ability of the models created.
国家哲学社会科学文献中心版权所有