首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Bangla Handwritten Character Recognition Using Extended Convolutional Neural Network
  • 本地全文:下载
  • 作者:Tandra Rani Das ; Sharad Hasan ; Md. Rafsan Jani
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2021
  • 卷号:9
  • 期号:3
  • 页码:158-171
  • DOI:10.4236/jcc.2021.93012
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:The necessity of recognizing handwritten characters is increasing day by day because of its various applications. The objective of this paper is to provide a sophisticated, effective and efficient way to recognize and classify Bangla handwritten characters. Here an extended convolutional neural network (CNN) model has been proposed to recognize Bangla handwritten characters. Our CNN model is tested on “BanglalLekha-Isolated” dataset where there are 10 classes for digits, 11 classes for vowels and 39 classes for consonants. Our model shows accuracy of recognition as: 99.50% for Bangla digits, 93.18% for vowels, 90.00% for consonants and 92.25% for combined classes.
  • 关键词:Loss and Accuracy;Deep Neural Network;Image Classification;Noise Removal;CNN and HCR
国家哲学社会科学文献中心版权所有