首页    期刊浏览 2024年11月22日 星期五
登录注册

文章基本信息

  • 标题:Multitask fMRI and machine learning approach improve prediction of differential brain activity pattern in patients with insomnia disorder
  • 本地全文:下载
  • 作者:Mi Hyun Lee ; Nambeom Kim ; Jaeeun Yoo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-88845-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We investigated the differential spatial covariance pattern of blood oxygen level-dependent (BOLD) responses to single-task and multitask functional magnetic resonance imaging (fMRI) between patients with psychophysiological insomnia (PI) and healthy controls (HCs), and evaluated features generated by principal component analysis (PCA) for discrimination of PI from HC, compared to features generated from BOLD responses to single-task fMRI using machine learning methods. In 19 patients with PI and 21 HCs, the mean beta value for each region of interest (ROIbval) was calculated with three contrast images (i.e., sleep-related picture, sleep-related sound, and Stroop stimuli). We performed discrimination analysis and compared with features generated from BOLD responses to single-task fMRI. We applied support vector machine analysis with a least absolute shrinkage and selection operator to evaluate five performance metrics: accuracy, recall, precision, specificity, and F2. Principal component features showed the best classification performance in all aspects of metrics compared to BOLD response to single-task fMRI. Bilateral inferior frontal gyrus (orbital), right calcarine cortex, right lingual gyrus, left inferior occipital gyrus, and left inferior temporal gyrus were identified as the most salient areas by feature selection. Our approach showed better performance in discriminating patients with PI from HCs, compared to single-task fMRI.
国家哲学社会科学文献中心版权所有