首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Spatiotemporal slope stability analytics for failure estimation (SSSAFE): linking radar data to the fundamental dynamics of granular failure
  • 本地全文:下载
  • 作者:Antoinette Tordesillas ; Sanath Kahagalage ; Lachlan Campbell
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-88836-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Impending catastrophic failure of granular earth slopes manifests distinct kinematic patterns in space and time. While risk assessments of slope failure hazards have routinely relied on the monitoring of ground motion, such precursory failure patterns remain poorly understood. A key challenge is the multiplicity of spatiotemporal scales and dynamical regimes. In particular, there exist a precursory failure regime where two mesoscale mechanisms coevolve, namely, the preferred transmission paths for force and damage. Despite extensive studies, a formulation which can address their coevolution not just in laboratory tests but also in large, uncontrolled field environments has proved elusive. Here we address this problem by developing a slope stability analytics framework which uses network flow theory and mesoscience to model this coevolution and predict emergent kinematic clusters solely from surface ground motion data. We test this framework on four data sets: one at the laboratory scale using individual grain displacement data; three at the field scale using line-of-sight displacement of a slope surface, from ground-based radar in two mines and from space-borne radar for the 2017 Xinmo landslide. The dynamics of the kinematic clusters deliver an early prediction of the geometry, location and time of failure.
国家哲学社会科学文献中心版权所有