摘要:The LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the
Musa acuminata,
M. balbisiana and
M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana
LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the
MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of
MbLOXs. Transcriptome data based gene expression analysis showed that
MaLOX1,
4, and
7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7
MaLOXs were found to be low temperature-, high temperature-, and
Fusarium oxysporum f. sp.
Cubense tropical race 4 (
FocTR4)-responsive, respectively.
MaLOX8,
9 and
13 are responsive to all the three stresses,
MaLOX4 and
MaLOX12 are high temperature- and
FocTR4-responsive;
MaLOX6 and
MaLOX17 are significantly induced by low temperature and
FocTR4; and the expression of
MaLOX7 and
MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several
MaLOXs are regulated by MeJA and
FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of
MaLOXs revealed 3 models respectively for 5 (
MaLOX7-
11), 3 (
MaLOX6,
13, and
17), and 1 (MaLOX
12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of
LOXs in banana growth and development and adaptations to different stresses.