首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Joint angle estimation with wavelet neural networks
  • 本地全文:下载
  • 作者:Saaveethya Sivakumar ; Alpha Agape Gopalai ; King Hann Lim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-89580-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:This paper presents a wavelet neural network (WNN) based method to reduce reliance on wearable kinematic sensors in gait analysis. Wearable kinematic sensors hinder real-time outdoor gait monitoring applications due to drawbacks caused by multiple sensor placements and sensor offset errors. The proposed WNN method uses vertical Ground Reaction Forces (vGRFs) measured from foot kinetic sensors as inputs to estimate ankle, knee, and hip joint angles. Salient vGRF inputs are extracted from primary gait event intervals. These selected gait inputs facilitate future integration with smart insoles for real-time outdoor gait studies. The proposed concept potentially reduces the number of body-mounted kinematics sensors used in gait analysis applications, hence leading to a simplified sensor placement and control circuitry without deteriorating the overall performance.
国家哲学社会科学文献中心版权所有