首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Outliers in Semi-Parametric Estimation of Treatment Effects
  • 本地全文:下载
  • 作者:Gustavo Canavire-Bacarreza ; Gustavo Canavire-Bacarreza ; Gustavo Canavire-Bacarreza
  • 期刊名称:Econometrics
  • 印刷版ISSN:2225-1146
  • 出版年度:2021
  • 卷号:9
  • 期号:1
  • 页码:19
  • DOI:10.3390/econometrics9020019
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric estimates. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage point outliers are considered. Bias arises in the case of bad leverage points because they completely change the distribution of the metrics used to define counterfactuals; good leverage points, on the other hand, increase the chance of breaking the common support condition and distort the balance of the covariates, which may push practitioners to misspecify the propensity score or the distance measures. We provide some clues to identify and correct for the effects of outliers following a reweighting strategy in the spirit of the Stahel-Donoho (SD) multivariate estimator of scale and location, and the S-estimator of multivariate location (Smultiv). An application of this strategy to experimental data is also implemented.
国家哲学社会科学文献中心版权所有