摘要:This research explores ways to develop a risk management strategy that enables shipping companies to reduce unnecessary fuel cost risks, fuel price fluctuations and improve financial management. Through the Monte Carlo method, the study makes use of the simulation of the conditional value-at-risk (CVaR) model. First, the VaR of various shipping-fuel-cost combination over a ten-year period is simulated. Then, through the most appropriate probability distribution test, it is found that most of the VaR of shipping fuel cost combination are in Beta–Arcsine distribution. In other words, the high-frequency data are concentrated at both tails (minimum and maximum) with high volatility. Therefore, the best strategy is to install scrubbers on existing ships to purify their exhaust gas and choose natural gas-based marine fuel for new ships. This will benefit the shipping companies significantly more compared to the use of low-sulfur fuel and choosing forward bunker agreements. Bunker swaps and options of bunker prices to hedging the risk of bunker cost raised in the end of Coronavirus oil shock, the strategy could help achieve the goal of risk management in the sustainable supply chain.