首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Historical cartographic and topo-bathymetric database on the French Rhône River (17th–20th century)
  • 本地全文:下载
  • 作者:Fanny Arnaud ; Lalandy Sehen Chanu ; Jules Grillot
  • 期刊名称:Earth System Science Data Discussions
  • 电子版ISSN:1866-3591
  • 出版年度:2021
  • 卷号:13
  • 期号:5
  • 页码:1939-1955
  • DOI:10.5194/essd-13-1939-2021
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Space and time analyses of channel changes, especially within large rivers subject to high levels of human impact, are critical to address multiple questions about rivers in the Anthropocene era. The reconstruction of long-term (> 150 year) evolutionary trajectories permits an understanding of how natural and anthropogenic factors impact hydromorphological and ecological processes in rivers, helps with the design of sustainable management and restoration options, and may also help in the assessment of future changes. However, the reconstruction of channel changes can be challenging: historical data are often scattered across many archives, and the quantity and accuracy of information generally decreases as one goes back in time. This data article provides a historical database of 350 cartographic and topo-bathymetric resources on the French Rhône River (530 km in length) compiled from the 17th to mid-20th century, with a temporal focus prior to extensive river training (1860s). The data were collected in 14 national, regional, and departmental archive services. A table describes the properties of each archived data item and its associated iconographic files. Some of the historical maps are available in a georeferenced format. A GIS layer enables one-click identification of all archive data available for a given reach of the French Rhône River. This database provides substantial new material for deeper analyses of channel changes over a longer time period and at a finer time step compared with previously available data. The database has several potential applications in geomorphology, retrospective hydraulic modelling, historical ecology, and river restoration, as well as permitting comparisons with other multi-impacted rivers worldwide. The dataset is available at https://doi.org/10.1594/PANGAEA.922437 (Arnaud et al., 2020a). Iconographic extracts of the 350 archived items are available at http://photo.driihm.fr/index.php/category/52 (last access: 2 May 2021).
国家哲学社会科学文献中心版权所有