首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Silicon content prediction of hot metal in blast furnace based on attention mechanism and CNN-IndRNN model
  • 本地全文:下载
  • 作者:Wang Gao-peng ; Yan Zhen-yu ; Zhai Hai-peng
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:252
  • 页码:1-5
  • DOI:10.1051/e3sconf/202125202025
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:The stability of blast furnace temperature is an important condition to ensure the efficient production of hot metal. Accurate prediction of silicon content in hot metal is of great significance to the control of blast furnace temperature in iron and steel plants. At present, the accuracy of most silicon prediction models can only be guaranteed when the furnace condition is stable. However, due to many factors affecting the silicon content in hot metal of blast furnace, and there are large noises, large delays and large fluctuations in the data, the previous prediction results are of limited guiding significance to the actual production. In this paper, combined with the actual situation, the convolution neural network is used to extract the furnace condition characteristics, and then combined with the attention mechanism and the IndRNN model to get the prediction results, so that the prediction can better adapt to the fluctuating data set. The experimental results show that the prediction error of this model is lower than that of other models, which provides a new solution for the research of silicon content in hot metal of blast furnace.
国家哲学社会科学文献中心版权所有