摘要:The real-time and accurate prediction of the molten iron silicon content of the blast furnace plays an important role in regulating the temperature of the blast furnace and stabilizing the furnace condition. When the time is large, the accuracy and credibility of the forecast results decrease rapidly, which is not conducive to on-site operators to carry out production operations according to the forecast results. To this end, this paper adds a state variable to each piece of data through the flexible least square parameter estimation method, and selects the training set in a state similar to the test sample. This makes the selection of training data more accurate and reliable. Application examples show that the method proposed in this paper improves the accuracy of silicon content prediction results and has good guiding significance for actual production operations.