首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Short-term power load forecasting based on combined kernel Gaussian process hybrid model
  • 本地全文:下载
  • 作者:Liang Lingyu ; Wenqi Huang ; Zhaojie Dong
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:256
  • 页码:1-5
  • DOI:10.1051/e3sconf/202125601009
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:As one of the countries with the most energy consumption in the world, electricity accounts for a large proportion of the energy supply in our country. According to the national basic policy of energy conservation and emission reduction, it is urgent to realize the intelligent distribution and management of electricity by prediction. Due to the complex nature of electricity load sequences, the traditional model predicts poor results. As a kernel-based machine learning model, Gaussian Process Mixing (GPM) has high predictive accuracy, can multi-modal prediction and output confidence intervals. However, the traditional GPM often uses a single kernel function, and the prediction effect is not optimal. Therefore, this paper will combine a variety of existing kernel to build a new kernel, and use it for load sequence prediction. In the electricity load prediction experiments, the prediction characteristics of the load sequences are first analyzed, and then the prediction is made based on the optimal hybrid kernel function constructed by GPM and compared with the traditional prediction model. The results show that the GPM based on the hybrid kernel is not only superior to the single kernel GPM but also superior to some traditional prediction models such as ridge regression, kernel regression and GP.
国家哲学社会科学文献中心版权所有